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Enhancing classical continuum mechanics
Within the framework of generalized continuum mechanics, we
introduce additional degrees of freedom

DOF = {u , χ̂
∼

p}

where χ̂
∼

p is a generally non compatible plastic microdeformation
tensor.
In a first gradient theory, only the first gradients of the DOF
intervene in the model

GRAD = {F∼ := 1∼ + u ⊗∇X , K∼ := Curl χ̂
∼

p}

In the context of crystal plasticity, only the curl part of the plastic
microdeformation is considered, instead of its full gradient.
The following definition of the Curl operator is adopted:

K∼ := Curl χ̂
∼

p :=
∂χ̂
∼

p

∂Xk
× e k , Kij := εjkl

∂χ̂p
ik

∂Xl

The “microcurl” model 5/54



Method of virtual power
The method of virtual power is used to derive the balance and
boundary conditions, following [Germain, 1973].

• Power density of internal forces; it is a linear form with
respect to the velocity fields and their Eulerian gradients:

p(i) = σ∼ : (u̇ ⊗∇x) + s∼ : ˙̂χ
∼

p
+ M∼ : curl ˙̂χ

∼

p
, ∀x ∈ V

where the conjugate quantities are the Cauchy stress tensor
σ∼ , which is symmetric for objectivity reasons, the microstress
tensor, s∼, and the generalized couple stress tensor M∼ . The
curl of the microdeformation rate is defined as

curl ˙̂χ
∼

p
:= εjkl

∂ ˙̂χp
ik

∂xl
e i ⊗ e j = K̇∼ · F∼

−1

The “microcurl” model 6/54



Method of virtual power
The method of virtual power is used to derive the balance and
boundary conditions, following [Germain, 1973].

• Power density of contact forces;

p(c) = t · u̇ + m∼ : ˙̂χ
∼

p
, ∀x ∈ ∂V

where t is the usual simple traction vector and m∼ the double
traction tensor.
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Method of virtual power
The method of virtual power is used to derive the balance and
boundary conditions, following [Germain, 1973].

• Application of the principle of virtual power, in the absence
of volume forces and in the static case, for brevity:

−
∫

D
p(i) dV +

∫
∂D

p(c) dS = 0

for all virtual fields u̇ , ˙̂χ
∼

p
, and any subdomain D ⊂ V .
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Method of virtual power
The method of virtual power is used to derive the balance and
boundary conditions, following [Germain, 1973].

• Application of the principle of virtual power, in the absence
of volume forces and in the static case, for brevity:

−
∫

D
p(i) dV +

∫
∂D

p(c) dS = 0

for all virtual fields u̇ , ˙̂χ
∼

p
, and any subdomain D ⊂ V .

• By application of Gauss divergence theorem, assuming
sufficient regularity of the fields, this statement expands into:∫

V

∂σij

∂xj
u̇i dV +

∫
V

(
εkjl

∂Mik

∂xl
− sij

)
˙̂χp
ij dV

+

∫
∂V

(ti − σijnj) u̇i dS+

∫
∂V

(mik − εjklMijnl) ˙̂χp
ik dS = 0, ∀u̇i ,∀ ˙̂χp

ij
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Method of virtual power

This leads to the two field equations of balance of momentum and
generalized balance of moment of momentum:

div σ∼ = 0, curlM∼ + s∼ = 0, ∀x ∈ V

and two boundary conditions

t = σ∼ · n , m∼ = M∼ · ε
∼
· n , ∀x ∈ ∂V

the index notation of the latter relation being mij = Mikεkjlnl .
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State variables

• The deformation gradient is decomposed into elastic and plastic parts in
the form F∼ = E∼ · P∼

• The elastic strain is defined as E∼
e := 1

2
(E∼

T · E∼ − 1∼)
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State variables

• The deformation gradient is decomposed into elastic and plastic parts in
the form F∼ = E∼ · P∼

• The elastic strain is defined as E∼
e := 1

2
(E∼

T · E∼ − 1∼)

• The microdeformation is linked to the plastic deformation via the
introduction of a relative deformation measure defined as

e∼
p := P∼

−1 · χ̂
∼

p − 1∼

It measures the departure of the microdeformation from the plastic
deformation, which is associated with a cost in the free energy potential.
When e∼

p ≡ 0, the microdeformation coincides with plastic deformation.
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State variables

• The deformation gradient is decomposed into elastic and plastic parts in
the form F∼ = E∼ · P∼

• The elastic strain is defined as E∼
e := 1

2
(E∼

T · E∼ − 1∼)

• The microdeformation is linked to the plastic deformation via the
introduction of a relative deformation measure defined as

e∼
p := P∼

−1 · χ̂
∼

p − 1∼

It measures the departure of the microdeformation from the plastic
deformation, which is associated with a cost in the free energy potential.
When e∼

p ≡ 0, the microdeformation coincides with plastic deformation.

• The state variables are assumed to be the elastic strain, the relative
deformation, the curl of microdeformation and some internal variables, α:

STATE := {E∼
e , e∼

p, K∼, α}
The specific Helmholtz free energy density, ψ, is a function of these
variables. In this simple version of the model, the curl of
microdeformation is assumed to contribute entirely to the stored energy.
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Entropy principle
The dissipation rate density is the difference:

D := p(i) − ρψ̇ ≥ 0

which must be positive according to the second principle of thermodynamics.

When the previous strain measures are introduced, the power density of

internal forces takes the following form:

p(i) = σ∼ : Ė∼ · E∼
−1 + σ∼ : E∼ · Ṗ∼ · P∼

−1 · E∼
−1

+ s∼ : (P∼ · ė∼
p + Ṗ∼ · e∼

p) + M∼ : K̇∼ · F∼
−1

=
ρ

ρi
Π∼

e : Ė∼
e
+
ρ

ρi
Π∼

M : Ṗ∼ · P∼
−1

+ s∼ : (P∼ · ė∼
p + Ṗ∼ · e∼

p) + M∼ : K̇∼ · F∼
−1

where Π∼
e is the second Piola–Kirchhoff stress tensor with respect to the

intermediate configuration and Π∼
M is the Mandel stress tensor:

Π∼
e := JeE∼

−1 · σ∼ · E∼
−T , Π∼

M := JeE∼
T · σ∼ · E∼

−T = E∼
T · E∼ ·Π∼

e
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State laws
On the other hand,

ρψ̇ = ρ
∂ψ

∂E∼
e : Ė∼

e
+ ρ

∂ψ

∂e∼
p

: ė∼
p + ρ

∂ψ

∂K∼
: K̇∼ + ρ

∂ψ

∂α
α̇

We compute

JeD = (Π∼
e − ρi

∂ψ

∂E∼
e ) : Ė∼

e
+ (JeP∼

T · s∼− ρi
∂ψ

∂e∼
p
) : ė∼

p

+ (JeM∼ · F∼
−T − ρi

∂ψ

∂K∼
) : K̇∼

+ (Π∼
M + Jes∼ · χ̂∼

pT ) : Ṗ∼ · P∼
−1 − ρi

∂ψ

∂α
α̇ ≥ 0

Assuming that the processes associated with Ė∼
e
, ė∼

p and K̇∼ are
non–dissipative, the state laws are obtained:

Π∼
e = ρi

∂ψ

∂E∼
e , s∼ = J−1

e P∼
−T · ρi

∂ψ

∂e∼
p
, M∼ = J−1

e ρi
∂ψ

∂K∼
· F∼

T
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Evolution laws
The residual dissipation rate is

JeD = (Π∼
M + Jes∼ · χ̂∼

pT ) : Ṗ∼ · P∼
−1 − Rα̇ ≥ 0, with R := ρi

∂ψ

∂α
At this stage, a dissipation potential, function of stress measures,
Ω(S∼ ,R), is introduced in order to formulate the evolution
equations for plastic flow and internal variables:

Ṗ∼ · P∼
−1 =

∂Ω

∂S∼
, with S∼ := Π∼

M + Jes∼ · χ̂∼
pT

α̇ = −∂Ω

∂R
where R is the thermodynamic force associated with the internal
variable α, and S∼ is the effective stress conjugate to plastic strain
rate, the driving force for plastic flow.
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Application to crystal plasticity
In the case of crystal plasticity, a generalized Schmid law is adopted for each

slip system s in the form:

f s(S∼ , τ
s
c ) = |S∼ : N∼

s | − τ s
c ≥ 0, with N∼

s = l s ⊗ n s

for activation of slip system s with slip direction, l s , and normal to the slip

plane, n s . We call N∼
s the orientation tensor. The critical resolved shear stress

is τ s
c which may be a function of R in the presence of isotropic hardening.
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Application to crystal plasticity
In the case of crystal plasticity, a generalized Schmid law is adopted for each

slip system s in the form:

f s(S∼ , τ
s
c ) = |S∼ : N∼

s | − τ s
c ≥ 0, with N∼

s = l s ⊗ n s

for activation of slip system s with slip direction, l s , and normal to the slip
plane, n s . We call N∼

s the orientation tensor. The critical resolved shear stress
is τ s

c which may be a function of R in the presence of isotropic hardening.

The generalized resolved shear stress can be decomposed into two

contributions:

S∼ : N∼
s = τ s−x s , with τ s = Π∼

M : N∼
s and x s = −s∼·χ̂∼

pT : N∼
s

The usual resolved shear stress is τ s whereas x s can be interpreted as an
internal stress or back–stress leading to kinematic hardening. [Steinmann, 1996]

The back–stress component is induced by the microstress s∼ or, equivalently, by

the curl of the generalized couple stress tensor, M∼ , via the balance equation

x s = curlM∼ · χ̂
∼

pT : N∼
s

The “microcurl” model 20/54



Application to crystal plasticity

In the case of crystal plasticity, a generalized Schmid law is
adopted for each slip system s in the form:

f s(S∼ , τ
s
c ) = |S∼ : N∼

s | − τ s
c ≥ 0, with N∼

s = l s ⊗ n s

for activation of slip system s with slip direction, l s , and normal to
the slip plane, n s . The critical resolved shear stress is τ s

c which
may be a function of R in the presence of isotropic hardening. The
kinematics of plastic slip follows from the choice of a dissipation
potential, Ω(f s), that depends on the stress variables through the
yield function itself, f s :

Ḟ∼
p·F∼

p−1 =
N∑

s=1

∂Ω

∂f s

∂f s

∂S∼
=

N∑
s=1

γ̇s N∼
s , with γ̇s =

∂Ω

∂f s
sign(S∼ : N∼

s)
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From micromorphic to strain gradient plasticity

If the following internal constraint is enforced:

e∼
p ≡ 0 ⇐⇒ χ̂

∼
p ≡ P∼

the curl part of the plastic microdeformation is directly related to
the dislocation density densor:

K∼ := Curl χ̂
∼

p ≡ CurlP∼ = Jα∼ · F∼
−T

The microcurl theory reduces to strain gradient plasticity according
to [Gurtin, 2002].

As a result the microcurl model incorporates, as wanted, a
dependence of material behaviour on the dislocation density tensor.
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Small deformation microcurl model
When deformations and rotations remain sufficiently small, the
previous equations can be linearized as follows:

F∼ = 1∼ + H∼ = 1∼ + H∼
e + H∼

p, H∼
e = ε∼

e + ωe , H∼
p = ε∼

p + ωp

where ε∼
e ,ω∼

e (resp. ε∼
p,ω∼

p) are practically equal to the symmetric
and skew–symmetric parts of E∼ − 1∼ (resp. P∼ − 1∼).
When microdeformation is small, the relative deformation is
linearized as

e∼
p = (1∼ + H∼

p)−1 · (1∼ + χ
∼

p)− 1∼ ' χ
∼

p −H∼
p, with χ

∼
p = χ̂

∼
p − 1∼
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Small deformation microcurl model
When deformations and rotations remain sufficiently small, the
previous equations can be linearized as follows:

F∼ = 1∼ + H∼ = 1∼ + H∼
e + H∼

p, H∼
e = ε∼

e + ωe , H∼
p = ε∼

p + ωp

where ε∼
e ,ω∼

e (resp. ε∼
p,ω∼

p) are practically equal to the symmetric
and skew–symmetric parts of E∼ − 1∼ (resp. P∼ − 1∼).
When microdeformation is small, the relative deformation is
linearized as

e∼
p = (1∼ + H∼

p)−1 · (1∼ + χ
∼

p)− 1∼ ' χ
∼

p −H∼
p, with χ

∼
p = χ̂

∼
p − 1∼

When linearized, the state laws become:

σ∼ = ρ
∂ψ

∂ε∼
e
, s∼ = ρ

∂ψ

∂e∼
p
, M∼ = ρ

∂ψ

∂K∼
The evolution equations read then:

ε̇∼
p =

∂Ω

∂(σ∼ + s∼)
, α̇ = −∂Ω

∂R
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Small deformation microcurl model
We adopt the most simple case of a quadratic free energy
potential:

ρψ(ε∼
e , e∼

p,K∼ ) =
1

2
ε∼

e : C
≈

: ε∼
e +

1

2
Hχe∼

p : e∼
p +

1

2
AK∼ : K∼

The usual four–rank tensor of elastic moduli is denoted by C
≈
. The

higher order moduli have been limited to only two additional
parameters: Hχ (unit MPa) and A (unit MPa.mm2). It follows
that:

σ∼ = C
≈

: ε∼
e , s∼ = Hχe∼

p, M∼ = AK∼

Large values of Hχ ensure that e∼
p remains small so that χ

∼
p remains

close to H∼
p and K∼ is close to the dislocation density tensor:

curlχ
∼

p ≡ curlH∼
p = α∼
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Small deformation microcurl model
We adopt the most simple case of a quadratic free energy
potential:

ρψ(ε∼
e , e∼

p,K∼ ) =
1

2
ε∼

e : C
≈

: ε∼
e +

1

2
Hχe∼

p : e∼
p +

1

2
AK∼ : K∼

The usual four–rank tensor of elastic moduli is denoted by C
≈
. The

higher order moduli have been limited to only two additional
parameters: Hχ (unit MPa) and A (unit MPa.mm2). It follows
that:

σ∼ = C
≈

: ε∼
e , s∼ = Hχe∼

p, M∼ = AK∼

The yield condition for each slip system becomes:

f s = |τ s − x s | − τ s
c

with

x s = −s∼ : P∼
s = (curlM∼ ) : P∼

s = A(curl curlχ
∼

p) : N∼
s
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Simple shear of a two–phase laminate

γ

h 2
h 2

γ

l

1

2

O

n

s

(s) (h+)(h−)

The microstructure is composed of a hard elastic phase (h) and a
soft elasto–plastic phase (s) where one slip system with slip
direction normal to the interface between (h) and (s) is considered.
A mean simple glide γ̄ is applied in the crystal slip direction of the
phase (s). We consider displacement and microdeformation fields
of the form:

u1 = γ̄x2, u2(x1), u3 = 0, χp
12(x1), χp

21(x1)

within the context of small deformation theory.
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Simple shear of a two–phase laminate

u1 = γ̄x2, u2(x1), u3 = 0, χp
12(x1), χp

21(x1)ˆ
H∼

˜
=

24 0 γ̄ 0
u2,1 0 0
0 0 0

35 ˆ
H∼

p˜
=

24 0 γ 0
0 0 0
0 0 0

35 ˆ
H∼

e˜
=

24 0 γ̄ − γ 0
u2,1 0 0
0 0 0

35
h
χ
∼

p
i

=

24 0 χp
12(x1) 0

χp
21(x1) 0 0
0 0 0

35 h
curl χ

∼

p
i

=

24 0 0 −χp
12,1

0 0 0
0 0 0

35
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Simple shear of a two–phase laminate

u1 = γ̄x2, u2(x1), u3 = 0, χp
12(x1), χp

21(x1)

ˆ
H∼

˜
=

24 0 γ̄ 0
u2,1 0 0
0 0 0

35 ˆ
H∼

p˜
=

24 0 γ 0
0 0 0
0 0 0

35 ˆ
H∼

e˜
=

24 0 γ̄ − γ 0
u2,1 0 0
0 0 0

35
h
χ
∼

p
i

=

24 0 χp
12(x1) 0

χp
21(x1) 0 0
0 0 0

35 h
curl χ

∼

p
i

=

24 0 0 −χp
12,1

0 0 0
0 0 0

35
The resulting stress tensors are:

ˆ
σ∼

˜
= µ

24 0 γ̄ − γ + u2,1 0
γ̄ − γ + u2,1 0 0

0 0 0

35 ˆ
s∼
˜

= −Hχ

24 0 γ − χp
12 0

−χp
21 0 0

0 0 0

35
ˆ
M∼

˜
=

24 0 0 −Aχp
12,1

0 0 0
0 0 0

35 ˆ
curlM∼

˜
=

24 0 −Aχp
12,11 0

0 0 0
0 0 0

35
These forms of matrices are valid for both phases, except that γ ≡ 0 in the hard
elastic phase. Each phase possesses its own material parameters, Hχ and A, the
shear modulus, µ, being assumed for simplicity to be identical in both phases.
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Simple shear of a two–phase laminate

The balance equation, s∼= −curlM∼ , gives χp
21 = 0 and the plastic slip:

γ = χp
12 −

A

Hχ
χp

12,11

In the soft phase, the plasticity criterion stipulates that

σ12 + s12 = τc + Hγcum

where H is a linear hardening modulus considered in this phase.
We obtain the second order differential equation for the microdeformation
variable in the soft phase, χps

12,

1

ωs2
χps

12,11 − χps
12 =

τc − σ12

H
, with ωs =

s
Hs

χH

As
`
Hs

χ + H
´

where 1/ωs is the characteristic length of the soft phase for this boundary value
problem.
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Simple shear of a two–phase laminate

The force stress balance equation requires σ12 to be uniform. It follows that the
non–homogeneous part of the differential equation is constant and then the
hyperbolic profile of χps

12 takes the form:

χps
12 = C s cosh (ωsx) + D

where C s and D are constants to be determined. Symmetry conditions
(χps

12(−s/2) = χps
12(s/2)) have been taken into account.

In the elastic phase, where the plastic slip vanishes, an hyperbolic profile of the
microdeformation variable, χph

12 , is also obtained:

χph
12 = C h cosh

„
ωh

„
x ± s + h

2

««
, with ωh =

s
Hh

χ

Ah

where, again, C h is a constant to be determined and symmetry conditions have
been taken into account. It is remarkable that the plastic microvariable, χph

12 ,
does not vanish in the elastic phase, close to the interfaces, although no plastic
deformation takes place.
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Simple shear of a two–phase laminate

The coefficients C s , D and C h can be identified using the interface and
periodicity conditions:

• Continuity of χp
12 at x = ±s/2:

C s cosh
“
ωs s

2

”
+ D = C h cosh

„
ωh h

2

«
(1)

• Continuity of the double traction, m12 = −M13 at x = ±s/2:

AsωsC s sinh
“
ωs s

2

”
= −AhωhC h sinh

„
ωh h

2

«
(2)
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Simple shear of a two–phase laminate

• Periodicity of displacement component u2. We have the constant stress
component

σ12 = µ(γ̄ − γ + u2,1)

whose value is obtained from the plasticity criterion in the soft phase:

σ12 = τc + Hγcum − Asχps
12,11

us
2,1 =

σ12

µ
− γ̄ + γ =

τc
µ
− γ̄ +

Asωs2C s

H
cosh (ωsx) +

H + µ

µ
D

in the soft phase and

uh
2,1 =

σ12

µ
− γ̄ =

τc
µ
− γ̄ +

H

µ
D

in the hard phase. The average on the whole structure,Z (s+h)/2

−(s+h)/2

u2,1 dx = 0

must vanish for periodicity reasons and gives„
τc
µ
− γ̄

«
(s + h) +

2AsωsC s

H
sinh

“
ωs s

2

”
+

H (s + h) + µs

µ
D = 0 (3)
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Plastic microdeformation and plastic slip

µ = 30000 MPa
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Plastic microdeformation and plastic slip

µ = 30000 MPa

s = 0.7µm

h = 0.3µm

As = Ah = 100 MPa.µm2

Hs
χ = Hh

χ = 100000 MPa

τc = 20 MPa

lc =
q

A
µ
' 60 nm

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

-0.4 -0.2  0  0.2  0.4

x

γ(x)

γ(x) FE

Size effect in a two–phase single crystal laminate 39/54



Plastic microdeformation and plastic slip
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Overall cyclic response
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Size effects
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Size effects

F
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w
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s,
 Σ

Microstructural length scale, l

∆Σ

Effect of H

cl

Effect of H

Scaling law l

n

n

Effect of A

χ

χ

Hχ and A can be calibrated to account for a scaling law 1/ln,
0 < n < 2
[Cordero et al., 2010]
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Strain gradient plasticity as a limit case

• Size effect according to SGP

lim
Hχ→∞

Σ12 = τc +
12As〈γ〉

f 3
s l2

physical meaning of a 1/l2 scaling law?
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Boundary value problem for micromorphic crystals

• Shear test

• Periodic grains with random
orientations

• Periodic mesh

• Periodic boundary
conditions:
u (x) = E∼.x + v (x), v
periodic
χ
∼

p(x) periodic

• 2 slip systems / grain

• The grain size d is ranging
from tens of nanometers to
hundreds of microns.

l2

d

2nn1

l1

E = 70000 MPa
ν = 0.3

A = 0.01MPa.mm2

Hχ = 106 MPa

Intrinsic length scale:

lc =
√

A
Hχ

= 0.1µm
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Boundary value problem for micromorphic crystals

d

d

φ
θφ

x
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X
l

ln

n1
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2
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Boundary value problem for micromorphic crystals
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Grain size effect
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Grain size effect
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Plastic strain field
d = 200µm d = 20µm d = 10µm

d = 4µm d = 2µm d = 1µm

0 0.004 0.008 0.012 0.015 0.019 0.023 0.027 0.031 0.035 0.039
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Dislocation density tensor field
d = 200µm d = 20µm d = 10µm

d = 4µm d = 2µm d = 1µm

0 0.5 1.0 1.5 1.9 2.4 2.9 3.4 3.9 4.4 4.9

 
[mm  ]-1
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