Application to the Lüders behaviour in steels

Anthony Marais, Matthieu Mazière, Samuel Forest

Mines ParisTech / CNRS Centre des Matériaux/UMR 7633 BP 87, 91003 Evry, France Samuel.Forest@mines-paristech.fr

1 Experimental evidence of Lüders band propagation

Mesh-dependency of standard FE simulations of Lüders bands 2

Experimental evidence of Lüders band propagation

2 Mesh-dependency of standard FE simulations of Lüders bands

Experimental evidence of Lüders band propagation

Strain field measurements

Experimental evidence of Lüders band propagation

^{5/17}

Strain field measurements

6/17

Mesh-dependency of standard FE simulations of Lüders bands

Mesh-dependency of standard FE simulations of Lüders bands

(Ballarin et al., 2009)

Mesh-dependency of standard FE simulations of Lüders bands

9/17

Smooth propagation of the front

Smooth propagation of the front

Strain gradient plasticity solution

Multi-linear softening-hardening material

peak stress: σ_M , minimal stress: σ_m , plateau stress σ_p , Lüders strain p_L , hardening moduli $H_1 < 0, H_2 > 0$.

Bifurcation analysis

Homogeneous tensile stress state. The strain localization band in 2D (Rice's criterion) is inclined at 54.7° from the the tensile axis

Description of the band front

•
$$\sigma_p = \sigma_m + H_2(p - p_m) - Ap'', \quad l_2^2 = \frac{A}{H_2} \Longrightarrow$$
 hyperbolic

•
$$\sigma_p = \sigma_m + H_1(p - p_m) - Ap'', \quad l_1^2 = -\frac{A}{H_1} \Longrightarrow$$
 sine branch

interface conditions

Maxwell's rule

determination of the plateau stress and Lüders strain

Analytical and finite element plastic strain rate profiles \dot{p}

Ballarin V., Soler M., Perlade A., Lemoine X., and Forest S. (2009).

Mechanisms and Modeling of Bake-Hardening Steels: Part I. Uniaxial Tension.

Metallurgical and Materials Transactions A, vol. 40, pp 1375–1384.